
Role of AI
In functional testing

Role of AI

QualiZeal

MarketsandMarkets;
The AI in software
testing market is

projected to grow from
 in to

 by , at a
CAGR of during
the forecast period.

$284 million
$1.4 billion

38.8%

2020
 2025

In a study conducted by
IBM, it was found that
AI-powered functional

testing was able to
identify defects with an

accuracy of ,
compared to

accuracy for manual
testing.

95%
60%

" can help automate repetitive testing tasks, enabling testers to
focus on more complex and creative testing activities."

AI

-Gartner

Functional Testing is a crucial phase of software testing that entails an
extensive and meticulous validation methodology to ascertain the
adherence of a software system to its functional requirements and
specifications. This testing methodology primarily focuses on validating
each discrete function of the software application by providing
appropriate input and verifying the output against the specified
functional requirements.

Functional testing relies predominantly on black box testing techniques
and is agnostic of the application's source code. This methodology
scrutinizes various facets of the Application Under Test (AUT), such as
User Interface (UI), Application Programming Interfaces (APIs),
Database, Security, Client/Server communication, and other functional
aspects of the software system.

The testing process can be executed manually, which is a time-
consuming, expensive, and laborious process, or through automation,
which leverages a variety of testing frameworks and tools. Automation
helps optimize the testing process, improves test coverage, and
reduces the overall testing time and cost. However, automation requires
considerable investment in infrastructure, tools, and skilled personnel.

Ultimately, the choice between manual and automated testing depends
on various factors, such as the complexity of the software system, the
size of the development team, and the available budget and resources.
Artificial intelligence (AI) is highly compatible with functional testing as
it automates test execution, improves test data management, and
enhances the overall quality of testing.

02

QualiZeal 03

Role of AI

Functional vs Non-Functional Testing:

Role of Artificial Intelligence in Functional
Testing:
Artificial Intelligence (AI) has a pivotal role in functional testing, primarily through the automation of test cases.
Test automation tools leverage AI algorithms and techniques to streamline various functional testing
processes, thereby improving efficiency and reducing the time and effort required for testing.

Output
Output is compared against the
expected functional requirements and
specifications

Output is compared against non-functional
requirements and specifications

Tools and Techniques
Automation and manual testing tools,
Regression testing, User Acceptance
Testing

Performance testing tools, Security testing
tools, Usability testing tools, Load testing
tools

Test Cases Test cases are based on functional
requirements and use cases

Test cases are based on non-functional
requirements and use cases

Scope Unit testing, Integration testing,
System testing

Load testing, Stress testing, Usability
testing, Compatibility testing

Methodology Black box testing White box testing, Grey box testing

Focus Functionality Performance, Security, Usability,
Compatibility, Reliability

Objective Verify functional requirements and
specifications

Verify non-functional attributes such as
performance, security, reliability, usability,
and compatibility

Parameter Non-functional TestingFunctional Testing

QualiZeal 04

Role of AI

AI-based test automation tools use complex algorithms such as machine learning, natural language processing,
and image recognition to automate the creation and execution of test cases. These tools can analyze large
datasets, identify patterns, and generate test cases with minimal human intervention.

Test automation can be categorized into two types: script-based and scriptless. Script-based test automation
involves the creation of scripts that automate test execution, while scriptless automation uses AI to generate
tests automatically.

Generate & Update Unit Test:

In the field of DevOps, unit testing plays an integral role in continuous testing, and continuous integration/
continuous delivery (CI/CD). However, it is commonly acknowledged that authoring and maintaining unit tests
can be a tedious and laborious process, often requiring substantial time and effort from developers. To address
this challenge, AI-based products that leverage machine learning for automated unit test creation have
emerged, providing a promising solution for organizations seeking to introduce unit tests late in the product life
cycle.

Advantages -

Limitations -

 AI-based automated unit tests are a significant advancement over template-based
automated unit test generation, utilizing both static and dynamic analysis. The resulting
tests are genuine code rather than mere stubs

 Automated unit tests generated through machine learning can be rapidly created,
making them well-suited for large and complex codebases

 Developers can modify these automated tests as needed and set up the unit regression
suite with relative ease.

 As AI-generated unit tests are constructed based on the code itself, they cannot intuit
the intended functionality of the code. As such, if the code behaves unexpectedly, the
generated unit test will reflect that behavior, which is counterproductive for ensuring and
verifying an implicit or explicit contract

 Automated unit tests generated through machine learning can potentially break existing
unit tests that are functioning correctly. Therefore, developers need to take measures to
ensure that these tests are properly integrated and avoid any unwanted negative
impacts

 Developers still need to write tests for complex business logic themselves, as these
automated tests may not cover every possible scenario.

QualiZeal 05

Role of AI

User Interface Testing:

The amalgamation of artificial intelligence with User Interface (UI) testing has emerged as a promising field. AI-
based UI testing leverages test automation tools to perform accurate analysis of the Document Object Model
(DOM) and relevant code to establish object properties. Moreover, it employs sophisticated image recognition
techniques to navigate through the application and validate UI objects and elements visually, which is then used
to generate UI tests.

AI recognizes patterns, and one popular pattern is image-based testing using automated visual validation tools.
By using AI-based visual validation tools, testers can find differences that human testers would likely miss. This
testing activity makes manual testing a perfect fit for AI testing.

Furthermore, AI-based test systems utilize exploratory testing to uncover inconsistencies or deviations in the
application UI and create screenshots for future verification by a Quality Assurance (QA) engineer. Additionally,
the visual facets of the System Under Test (SUT), such as layout, size, and color, can be authenticated.

Benefits -

Benefits -

Limitations -

 AI-powered UI testing can facilitate enhanced code coverage
 AI models are designed to handle minor deviations in UI that do not result in test suite

failure.

 AI-based automation testing tools can significantly reduce setup time and complexity,
especially for novice testers or those without programming experience

 These tools can also facilitate change management by automating API test updates,
freeing up time and effort for manual testing of new scenarios.

 The number of platforms, app versions, and browser versions available for modern
applications is substantial, making it uncertain how effective AI-based UI automation will
be in such complex environments. However, the capability of cloud testing tools to perform
tests in parallel makes this area worth monitoring.

Automated API Testing:

Automating API testing is a complex task as it requires a deep understanding of the API and meticulous planning
to ensure comprehensive test coverage. Traditional API test automation tools rely on recording API activities and
traffic to create tests, which require manual modification and updating for changes in REST calls and
parameters.

AI-based API automation testing tools leverage machine learning techniques to mitigate this issue by examining
traffic and identifying patterns and connections between API calls, effectively grouping them by scenario. These
tools also use existing tests to learn about relationships between APIs, use these to understand changes in
APIs, and update existing tests or create new scenario-based tests.

QualiZeal 06

Role of AI

Limitations - API testing is inherently challenging and requires a deep understanding of the API,
making it difficult for AI-based automation tools to accurately identify scenarios and
associated API calls

 Currently, there are limited options available for machine learning-based API testing, and
the available tools have rudimentary capabilities.

Automation in Test Maintenance:

AI-Powered Smart Assistant for Precision Testing:

AI-Powered Spidering for Automated Testing:

Test Data Management:

AI-based tools are becoming increasingly popular in automating test maintenance. They can evaluate changes
made to the code and modify existing tests that no longer align with those changes. These tools are especially
effective when the code changes are not too complex. Updates to UI elements or field names no longer need to
break the test suite.

Companies that use continuous integration and continuous testing generate a wealth of data from their test
runs. However, it is time-consuming to sift through the data to look for common patterns over time. With ML, AI
tools can answer a testing question: What is the minimum number of tests to run to determine whether a
change is good or bad? These tools can analyze test coverage and flag areas at risk. For example, a team
implemented an ML algorithm to correlate system and debug logs to establish a "fingerprint" of test case
failures. This allowed the team to focus their efforts on new test failures.

ML enables automatic test writing for applications by spidering. New AI/ML tools can automatically crawl the
application, collect data on features, take screenshots, download HTML, and measure load times. Over time, the
ML models learn the expected patterns of the application. If the tool detects any deviation, visual difference, or
running slower than usual, it flags it as a potential issue. Although still in its infancy, this approach may
eventually lead to the automatic authoring of tests, helping testers understand which parts of the application
should be tested. Ultimately, a human tester needs to validate the flagged issues with domain knowledge of the
application.

Another promising application of AI in software testing is test data generation. Machine learning can be used to
generate data sets that are similar to production data, making them ideal for use in software testing. This is
accomplished by using existing production data sets to train machine learning models, which then generate
data that is similar to the training data.

The machine learning model that is used for generating data is called a Generative Adversarial Network (GAN). By
using GANs, software testers can generate large data sets for testing, saving significant amounts of time and
resources.

QualiZeal 07

Role of AI

Cypress

Selenium

Puppeteer

WebdriverIO

NightwatchJS

Cypress is a JavaScript-based testing framework that facilitates
automated test script creation. Its framework-agnostic nature
eliminates the need for rewriting new tests when the application is
shifted to a different framework. This is possible due to its ability to
communicate with different testing libraries and frameworks.

Selenium, an open-source automated testing suite, is one of the
most preferred choices for web application testing. Selenium is
composed of several components, each playing a specific role in
aiding test automation. The framework supports multiple test
system environments such as Windows, Mac, Linux and several
browsers such as Chrome, Firefox, and Internet Explorer.

Puppeteer, an open-source node js library, is used to automate and
streamline front-end development and testing. It contains APIs to
interact with and manage Chrome browser in headless mode, but it
can also be utilized for non-headless execution on browsers such as
Chrome and Firefox.

WebdriverIO is an automation framework built to automate modern
web and mobile applications. It simplifies the interaction with the
app and provides a set of plugins that help create a scalable, robust,
and stable test suite. WebdriverIO leverages the power of the
WebDriver protocol that is developed and supported by all browsers,
ensuring an authentic cross-browser testing experience.

NightwatchJS is an integrated, easy-to-use end-to-end testing
solution for web applications written in NodeJS. It offers a built-in
command-line test runner that runs the tests sequentially or in
parallel with retries and implicit waits. NightwatchJS also works
seamlessly with BrowserStack out of the box.

AI-Powered Tools Used to Automate
Functional Testing:

QualiZeal 08

Role of AI

From Accuracy to Scalability: Maximize
Testing ROI through Intelligence:
The ever-evolving domains of Artificial Intelligence (AI) and Machine Learning (ML) have emerged as a panacea
for narrowing the testing gaps that plague software systems and have proven to be most effective when they
are synergistically augmented by human expertise in real-time data handling.

As per the "Benefits of Automation & AI in Functional Testing" report, authored by Isaac Sacolick, a renowned
technologist and founder of StarCIO, AI and ML-powered testing tools can significantly enhance the quality
assurance (QA) process, especially when dealing with complex issues that are difficult to detect through manual
or automated testing.

AI's Business Benefits:

Platform Coverage as a Barrier:

AI Lowers the Barrier to Automation:

A recent survey of 200 IT executives found that almost all of them are experimenting with AI capabilities in
testing. The vast majority see the commercial benefits of using AI in Quality Assurance (QA), with areas such as
identifying anomalies, computer vision, and natural language processing seen as having the most promise.

As engineers don't have the time or expertise to test thoroughly by hand, more companies are turning to AI for
testing, recognizing that the tools have improved significantly over the last five years.

Testing on multiple platforms is a common pain point, with a lack of platform coverage a significant obstacle to
test automation. Only 22% of respondents claimed they could develop a single test case that could run on each
platform without modification, while 77% said they needed to write separate tests for each platform. There was a
significant gap between the CXO level and the teams that truly understands what's going on, with CXOs often
not fully aware of what developers are doing.

AI can also lower the barrier to entry for people who wish to automate. It is easier to implement and does not
require as much subject knowledge as traditional automation, meaning extra testers can be enlisted in the
automation process. Additionally, developers can participate in automation, as they know what they
programmed and what the product is, but they don't need to know how to automate.

A shift-left testing approach, involving automating more testing throughout the development process, and
expanding the scope of testing, can lead to improved customer happiness and app quality without fear of
damaging anything. Using machine learning and AI in testing allows teams to uncover more complicated quality
concerns.

QualiZeal 09

Role of AI

Identify the Testing Goals:

Create Test Scenarios:

Create Test Data:

Design Test Cases:

Execute the Test Cases:

Deliberate On, Track, and Resolve Defects:

The initial step of a functional testing plan is to determine the testing goals. These goals are based on the
software's expected features in accordance with project requirements. Functional testing goals include
validating the software's proper functioning and verifying that it handles errors and unexpected scenarios
gracefully.

The next step is to develop a comprehensive list of all the test scenarios for a particular feature. These test
scenarios depict the various ways the feature will be used. For example, for a payment module, the test
scenarios may include multiple currencies, handling invalid or expired card numbers, and generating a
notification upon successful transaction completion.

After the test scenarios are determined, the next step is to create test data that simulates normal use
conditions based on the identified test scenarios. The test data can be entered manually, such as through an MS
Excel spreadsheet or printout, or automatically via a script or test tool that inputs the data from a database, flat
file, XML, or spreadsheet. Each set of input data should have associated data that describes the expected result
that the input data should generate.

The next step is to design test cases based on the different desired outcomes for the test inputs. For example, if
an invalid credit card number is entered, the application should display a meaningful error message. The test
cases should be designed to verify the expected output based on the input data.

The designed test cases should then be executed through the application, and actual outcomes should be
compared against the expected results. If the actual and expected outputs differ, the feature has failed the test,
and a defect should be recorded.

In case a defect is identified, it should be recorded on a formal tracking system accessible to the entire project
team. The application should then be modified accordingly, and the test case should be executed again to
confirm resolution before a defect is marked as closed.

Make the Transition to Automated Functional
Testing:

QualiZeal 10

Role of AI

Identify the Testing Goals:

Create Test Scenarios:

Create Test Data:

Design Test Cases:

Execute the Test Cases:

Deliberate On, Track, and Resolve Defects:

The initial step of a functional testing plan is to determine the testing goals. These goals are based on the
software's expected features in accordance with project requirements. Functional testing goals include
validating the software's proper functioning and verifying that it handles errors and unexpected scenarios
gracefully.

The next step is to develop a comprehensive list of all the test scenarios for a particular feature. These test
scenarios depict the various ways the feature will be used. For example, for a payment module, the test
scenarios may include multiple currencies, handling invalid or expired card numbers, and generating a
notification upon successful transaction completion.

After the test scenarios are determined, the next step is to create test data that simulates normal use
conditions based on the identified test scenarios. The test data can be entered manually, such as through an MS
Excel spreadsheet or printout, or automatically via a script or test tool that inputs the data from a database, flat
file, XML, or spreadsheet. Each set of input data should have associated data that describes the expected result
that the input data should generate.

The next step is to design test cases based on the different desired outcomes for the test inputs. For example, if
an invalid credit card number is entered, the application should display a meaningful error message. The test
cases should be designed to verify the expected output based on the input data.

The designed test cases should then be executed through the application, and actual outcomes should be
compared against the expected results. If the actual and expected outputs differ, the feature has failed the test,
and a defect should be recorded.

In case a defect is identified, it should be recorded on a formal tracking system accessible to the entire project
team. The application should then be modified accordingly, and the test case should be executed again to
confirm resolution before a defect is marked as closed.

Challenges Associated with AI
Implementation in Functional Testing:

Role of AI

Define the scope and goals:

Develop a strategy:

Identify the right tools and technologies:

Build a team with the right skills and expertise:

Implement and continuously improve:

Clearly define the scope of AI in functional testing and the goals that you want to achieve. Identify the areas of
testing that are most suitable for automation and the types of tests that can benefit the most from AI.

Develop a strategy for implementing AI in functional testing. This should include a roadmap that outlines the
steps to be taken, the timelines, and the resources required. The strategy should also consider the impact on
existing processes and tools.

Identify the right tools and technologies that can support AI in functional testing. This includes tools for test
automation, test data management, and AI algorithms. Evaluate these tools based on their features, ease of use,
and scalability.

Build a team with the right skills and expertise to implement AI in functional testing. This includes data scientists,
machine learning experts, and software developers. Ensure that the team has a deep understanding of the
testing process and the software being tested.

Implement AI in functional testing and continuously improve the process. Monitor the results of AI testing and
identify areas for improvement. Use feedback from testers and other stakeholders to refine the process and
optimize the use of AI.

No Goal is Attainable Without a Compelling
Strategy:

11QualiZeal

Role of AI

As AI and Machine Learning continue to evolve and improve, they are poised to revolutionize the entire software
testing process.

One major advantage of using AI is its ability to automate complex testing scenarios that were previously
impossible in traditional approaches. Moreover, AI-powered testing provides deeper insights into the system
performance, detecting issues that may have been missed by manual or traditional testing methods.

QualiZeal’s expertise in AI and Machine Learning is well-positioned to meet such demand, enabling organizations
to achieve their strategic objectives and stay ahead of the curve.

We ensure that the AI-powered testing approach is ethical, transparent, and meets the highest quality
standards. The algorithms we use are also unbiased, accurate, and reliable that comply with all relevant
regulations and guidelines

 QualiZeal collects and prepare high-quality data for AI and Machine Learning algorithms. Our team of
experts can assist you in identifying and extracting the most relevant data sets and cleaning and pre-
processing them for training and validation purposes

 QualiZeal develops an effective testing strategy for AI aligned with your business goals and objectives.
Our quality engineers are trained to identify the most critical testing scenarios and design AI-enabled
test cases to ensure comprehensive and accurate testing

 QualiZeal set up the required infrastructure for AI-powered testing, including the selection and
integration of the necessary tools and technologies. We even provide guidance on the optimal
configuration and deployment of these tools to maximize their effectiveness

 QualiZeal offers training and skill augmentation services to empower your in-house capabilities in AI-
powered testing. Our training comprises the latest AI and Machine Learning modules that help in
developing a skilled workforce capable of handling advanced testing components.

12QualiZeal

